If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3z^2+30z+72=0
a = 3; b = 30; c = +72;
Δ = b2-4ac
Δ = 302-4·3·72
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-6}{2*3}=\frac{-36}{6} =-6 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+6}{2*3}=\frac{-24}{6} =-4 $
| 3w+12=9(w+8) | | 3(a–5)–6=–15 | | 4x+122=180 | | 4x-7x+4=10 | | 7=1.95x | | 2(a+4)=3(a+5) | | x(-5)x18=25-9 | | 0=2(x-12)(x+83) | | -15=t=60 | | 4t–19=3t | | 5=6y–7 | | t+43=44 | | -7(4t-20)+13=-15+2t-18t | | s+39=40 | | F(x)=13x^2-7x | | 7(-5w−14)−19w=-4w+20+7w | | (3x-5)+(19-x)+(2x)=X | | 5k+35)-8=12 | | 18y–5=17y | | 6x+4x+12=22 | | 107+9x=180 | | 13y=9+10y | | w+9-40=8 | | 6x+41=15x–40 | | 18=y5+18 | | 2(x+7)=38-10 | | -5=1=-2u | | a+32=5a | | (6x−9)=−33 | | b+27=4b | | (-18+7x)=(3x+14) | | 2x16=4x+2 |